

The Cost of Quality

Building a Service Management Business Case and Preparing for Continual Improvement

06.11.2009

Agenda

Introduction - IT Service Management and Business Cases Cost of Quality Principles Practical Application of Cost of Quality

2

IT Service Management and Business Cases

Main Issues

- Failure to make business cases for Service Management initiatives
- Failure to get adequate funding
- Failure to get buy-in

4

The Main Argument

The Cost of Quality framework provides an intuitive, convincing, proven approach to defining business cases, as well as to plan for continual improvement.

5

06.11.2009

06.11.2009

ITIL is designed to be applicable to all types of organizations and all types of services. Therefore, it can never know the as-is situation for a given organization.

9

Cost of Quality Principles

© Copyright 2009 Concentric Circle Consulting. All rights reserved.

10

What are "Quality Costs"?

- Costs incurred in the design, implementation, operation and maintenance of a quality management system
- Cost of resources committed to continuous improvement
- Costs of system, product and service failures
- All other necessary costs and non-value added activities required to achieve a quality product or service.

Types of Quality Costs

- Cost of Prevention Getting it right
- Cost of Appraisal Checking it
- Cost of Failure Fixing it
 - Internal Costs
 - External Costs
- Other costs, such as Opportunity Costs, are included by some analysts

12

Cost of Prevention

"What are the standards, guidelines and policies that we should apply?"

"We are developing new processes to help you."

Service Management Functions

"Here are the architectures to follow and tools for gathering and analyzing data."

Service Designer "Great – that will help me get the service right from the beginning, without need for rework." **Customers**

"We need a new

service."

"Thanks. This service is just what we needed."

13

- Process Definition
- Training

• Implement Design and Build Tools

Design to Prevent Waste

Ohno's Types of Waste	Examples of Application to IT Services
Over-production	Infrastructure capacity too large
Inventory	DHS Batch data management
Motion	Field service agents not close to users
Waiting	Manual procedures that could be automatedIncorrectly sequenced batch processing
Transportation	Inefficient network architectureInefficient server architectureInefficient application architecture
Over-processing	Service Design not based on real requirements
Scrap, rework, defects	Excess infrastructure capacity to reprocess data and redeliver servicesExcess personnel to deliver services

06.11.2009

• Rework

- Wasted capacity
- Possibly scrapped materials

16

Cost of Failure – External

"I need a service"

"Sorry. We can't deliver it right now"

> "Forget it – I'll find someone else (and we're not paying you, either)!"

17

• Loss of revenue

- Penalties paid
- Damaged reputation

06.11.2009

Service

Provider

Cost of Defect Removal vs. Typical Cost Allocation

06.11.2009

Cost of Defect Removal vs. Better Cost Allocation

06.11.2009

False Model of CoQ

- The Cost of Quality is *not* proportional to the level of quality achieved
- In this model, there is a tradeoff between cost and quality.

Better Model of CoQ

 Total CoQ = Cost of Achievement (Conformance) + Cost of Nonconformance

 Optimum Quality vs. Cost is fewer than zero defects!

Prevention and Service Management Activities

 Service Continuity Management (planning) •Capacity Management •Availability Management Information Security Management •Service Level Management (SLA negotiation) •Risk Assessment •Proactive Problem Management •inter alia

22

Appraisal and Service Management Activities

•Change Management •Service Testing •Service Evaluation But also... •Service Level Management •Reporting •Reviewing •inter alia

requirements

Failure and Service Management Activities

Activities restoring services to their agreed service levels

•Event Management (for Warnings and Exceptions) Incident Management •Reactive Problem Management •IT Service Continuity Management (aspects of recovering from disasters) •inter alia

CoQ and IT Today

- CoQ is recognized and is used especially in application development frameworks and methodologies (cf. CMM)
- CoQ is rarely used in Service Management
- CoQ is not explicitly mentioned in ITIL , although CSI refers to Joseph Juran and Philip Crosby, seminal writers on the subject

Practical Application

Overview of Project

• Goals

- Increase Process Efficiency
- Lower Cost of Quality
- Harmonize Processes under a single Quality Management System
- Scope: All IT global processes throughout the group

CoQ Roadmap

Task Name		4th Quarter			1st Quarter		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Establish CoQ Framework							
Identify Gaps and Priorities							
Plan for Baseline							
Create CoQ Baseline							
Develop Business Case							

Baseline Plan & Business Case

06.11.2009

Issues and Risks

• Wasting effort on inappropriate targets Consistent approach

• Full sampling is too costly and timeconsuming Random sample is easy to misuse

- Varying accuracy and presence
- Conflicts with other cost savings initiatives
- •Not aligned with budgets and actuals

• Classifying by irrelevant criteria • Confusion of organization with process activities

Classify

Popula-

tion

•Many sources

- •Lack of buy-in •Lack of tools for ongoing collection
- •Lack of data

 Benchmark Accuracy & existence

- Conflicts with other cost savings initiatives
- •Not aligned with budgets & actuals

Identify Population

Select Sample

Collect Data

Analyze Data

Estimate Benefit

30

06.11.2009

Classify Population

- Use categories that are significant for the business
 - validated vs. non-validated services in Pharma
 - Project size and complexity
 - Relevant business unit, site, etc.
 - Service criticality
- Align categories with activity areas within scope (e.g., by service management process)
- Do not explicitly refer to "Prevention", "Appraisal" and "Failure"

Issues of Data Collection

Element	Project Team	Activities to be Analyzed	
Workload	Very heavy; may force sampling	Well distributed	
Accuracy of data	May not understood local practices or assumptions made by individuals/teams	Understand need for accuracy?; falsification of data; confidentiality?	
Coherence of data	More apt to apply same analysis to all, and ensure inter-activity coherency	More apt to understand internal coherency of reported data	
Collection Tools	If tools exist, project team may be better at using them	If tools are not automated, training is required	
Future measurements	There is not likely to be a permanent project team	Use of automated collection tools is highly recommended	22

06.11.2009

Cost Type by Activity Area

Activity Area	Prevention	Appraisal	Failure
Availability	\checkmark	\checkmark	\checkmark
Capacity	\checkmark	\checkmark	\checkmark
Information Security	\checkmark	\checkmark	\checkmark
IT Service Continuity	\checkmark	\checkmark	\checkmark
Event	\checkmark	\checkmark	\checkmark
Incident			\checkmark
Problem	\checkmark	\checkmark	\checkmark
Configuration	\checkmark	\checkmark	\checkmark
Change	\checkmark	\checkmark	\checkmark
Release	\checkmark		
Service Testing		✓	

06.11.2009

Detail: A	Vailabil	lity Mg	jmt.
Activity Area	Prevention	Appraisal	Failure
Implement process	\checkmark		
Create and maintain Plan	\checkmark		
Define Reliability Standar	ds 🗸		
Define architectures	\checkmark		
Develop monitoring tools	s 🗸		
Train personnel	\checkmark		
Maintain Preventively	\checkmark		
Assess Risk	\checkmark		
Monitor and Report		\checkmark	
Test		\checkmark	
Resolve Incidents			\checkmark
			34

06.11.2009

Detail: Change Mgmt.

Activity Area	Prevention	Appraisal	Failure
Implement process	\checkmark		
Assess impact		\checkmark	
Test change		\checkmark	
Plan Remediation	\checkmark		
Remediate failed change			\checkmark
Train personnel	\checkmark		
Report on Changes		\checkmark	
Develop Standard Changes	\checkmark		
Develop tools	✓		

Detail: Incident Mgmt.

Activity Area	Prevention	Appraisal	Failure
Implement process			\checkmark
Resolve Incidents			\checkmark
Develop tools			\checkmark
Monitor and Report			\checkmark
Develop tools			\checkmark
Train personnel			\checkmark
Manage Escalations			\checkmark
Review Major Incident			\checkmark

06.11.2009

© Copyright 2009 Concentric Circle Consulting. All rights reserved.

37

Non-conformance Worksheet

Cost of Quality Non-conformance Worksheet Description of Non-conformance: A certain type of application bug, etc.									
Task	Performed by	Number of persons affected	Avg. Hrs. per task per person	Hourly rate	Personnel Costs	Material Costs	External Failure costs	Internal Failure Costs	Total Cost of Non- conformance per event
1 st Line Support Incident	Service Desk Agent	1.0	.04	60.00	2				2
2 nd Line Support Incident	Operations Teams	1.5	.50	80.00	60				60
Escalation Incident	Service Desk Supervisor	1.0	.25	90.00	23				23
Problem Management	Problem Analyst	1.0	4.00	85.00	340				340
Escalation Problem	Problem Manager	1.0	.50	100.00	50				50
2 nd Line Support Problem	Operations Teams	1.0	15.00	80.00	1'200				1'200
	Developers			90.00	450				450
								Total cost	2'125
Measurement period:	2009	Nu measure	ım. Events per ement period:	10	Cost per event:	2'125	Tota confori	Il Cost of non- mance during period	21'249

38

06.11.2009

CoQ Techniques in the Business Case

Business Case Element	Examples				
Objectives	For Email se steady	rvice, reduce	CoQ by 1	0%, keeping defect ra	ate
As-is Costs	Prevention: Appraisal: Failure:	100K p.a. 1.5M p.a. 5.2M p.a.	Total:	6.8M p.a.	
To-be Costs	Prevention: Appraisal: Failure:	1.0M p.a. 2.5M p.a. 2.6M p.a.	Total:	6.1M p.a.	
Project Costs	Prevention: Appraisal: Failure: Total:	800K Training, Process harmonization 400K Test Tool harmonization, Training 700K Process harmonization 1.9M			
					40

06.11.2009

Prepare for Continual Improvement

Framework Creation & Baselining Project

- Metrics
- Measurement Tools
- Coherency with other metrics

- Objectives
- Measurements
 - Improvements

42

06.11.2009

Evolution of CoQ and Maturity

06.11.2009

Summary

- CoQ Concept is easy to understand
- CoQ complements well the service lifecycle
- Good mapping between type of costs and process activities
- Framework for CSI metrics
- Proven approach for significant cost reductions

Reactions?

Comments?

Questions?

06.11.2009

